${\frak n}$-coinvariants des ${\frak g}$-modules ${\frak n}$-localement nilpotents
نویسندگان
چکیده
منابع مشابه
The Artinian property of certain graded generalized local chohomology modules
Let $R=oplus_{nin Bbb N_0}R_n$ be a Noetherian homogeneous ring with local base ring $(R_0,frak{m}_0)$, $M$ and $N$ two finitely generated graded $R$-modules. Let $t$ be the least integer such that $H^t_{R_+}(M,N)$ is not minimax. We prove that $H^j_{frak{m}_0R}(H^t_{R_+}(M,N))$ is Artinian for $j=0,1$. Also, we show that if ${rm cd}(R_{+},M,N)=2$ and $tin Bbb N_0$, then $H^t_{frak{m}_0R}(H^2_...
متن کاملMaximal prehomogeneous subspaces on classical groups
Suppose $G$ is a split connected reductive orthogonal or symplectic group over an infinite field $F,$ $P=MN$ is a maximal parabolic subgroup of $G,$ $frak{n}$ is the Lie algebra of the unipotent radical $N.$ Under the adjoint action of its stabilizer in $M,$ every maximal prehomogeneous subspaces of $frak{n}$ is determined.
متن کاملOn the 2-absorbing Submodules
Let $R$ be a commutative ring and $M$ be an $R$-module. In this paper, we investigate some properties of 2-absorbing submodules of $M$. It is shown that $N$ is a 2-absorbing submodule of $M$ if and only if whenever $IJLsubseteq N$ for some ideals $I,J$ of R and a submodule $L$ of $M$, then $ILsubseteq N$ or $JLsubseteq N$ or $IJsubseteq N:_RM$. Also, if $N$ is a 2-absorbing submodule of ...
متن کاملthe artinian property of certain graded generalized local chohomology modules
let $r=oplus_{nin bbb n_0}r_n$ be a noetherian homogeneous ring with local base ring $(r_0,frak{m}_0)$, $m$ and $n$ two finitely generated graded $r$-modules. let $t$ be the least integer such that $h^t_{r_+}(m,n)$ is not minimax. we prove that $h^j_{frak{m}_0r}(h^t_{r_+}(m,n))$ is artinian for $j=0,1$. also, we show that if ${rm cd}(r_{+},m,n)=2$ and $tin bbb n_0$, then $h^t_{frak{m}_0r}(h^2_{...
متن کاملmaximal prehomogeneous subspaces on classical groups
suppose $g$ is a split connected reductive orthogonal or symplectic group over an infinite field $f,$ $p=mn$ is a maximal parabolic subgroup of $g,$ $frak{n}$ is the lie algebra of the unipotent radical $n.$ under the adjoint action of its stabilizer in $m,$ every maximal prehomogeneous subspaces of $frak{n}$ is determined.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin de la Société mathématique de France
سال: 1988
ISSN: 0037-9484,2102-622X
DOI: 10.24033/bsmf.2104